Pre-AP Mathematics Grade 6 $4^{\text {th }}$ Nine Weeks Scope and Sequence

| Content StandardS | Dates
 Taught | \% of
 Students
 scoring
 over 70\% | Dates
 Re-taught
 (Optional) |
| :--- | :--- | :--- | :--- | | Formative and Summative
 Assessments/ (Any Additional
 Comments Optional) |
| :---: |
| 29c. Giving quantitative measures of center (median and/or mean) and
 variability (interquartile range and/or mean absolute deviation) as
 well as describing any overall pattern and any striking deviations
 from the overall pattern with reference to the context in which the
 data were gathered. [6-SP5c] |
| 26. Understand that a set of data collected to answer a statistical
 question has a distribution which can be described by its center,
 spread, and overall shape. [6-SP2] |
| 29. Summarize numerical data sets in relation to their context, such as
 by: [6-SP5]
 d. Relating the choice of measures of center and variability to the
 shape of the data distribution and the context in which the data
 were gathered. [6-SP5d] |
| |
| Expressions and Equations |
| 12. Write and evaluate numerical expressions involving whole-number
 exponents. [6-EE1] |
| 17. Use variables to represent numbers, and write expressions when
 solving a real-world or mathematical problem; understand that a
 variable can represent an unknown number or, depending on the
 purpose at hand, any number in a specified set. [6-EE6] |
| 14. Apply the properties of operations to generate equivalent
 expressions. [6-EE3]
 Example: Apply the distributive property to the expression 3(2 + x) to
 produce the equivalent expression 6 + 3x; apply the distributive property
 to the expression 24x + 18y to produce the equivalent expression
 6(4x + 3y); apply properties of operations to $y+y+y$ to produce the
 equivalent expression 3y. |
| 15. Identify when two expressions are equivalent (i.e., when the two
 expressions name the same number regardless of which value is
 substituted into them). [6-EE4] |

Content StandardS	Dates Taught	\% of Students scoring over 70\%	Dates Re-taught (Optional)
15. Example: The expressions $y+y+y$ and 3y are equivalent because they name the same number regardless of which number y represents.	Formative and Summative Comments Optional)		
13. Write, read, and evaluate expressions in which letters stand for numbers. [6-EE2]			
16. Understand solving an equation or inequality as a process of answering a question: which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true. [6-EE5]			
18. Solve real-world and mathematical problems by writing and solving equations of the form $x+p=q$ and $p x=q$ for cases in which p, q, and x are all nonnegative rational numbers. [6-EE7]			
Ratios and Proportional Relationships			
3. Use ratio and rate reasoning to solve real-world and mathematical problems, e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations. [6-RP3]			
Expressions and Equations			
13. Write, read, and evaluate expressions in which letters stand for numbers. [6-EE2] c. Evaluate expressions at specific values of their variables. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole- number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). [6-EE2c]			

Content StandardS	Dates Taught	\% of Students scoring over 70%	Dates Re-taught (Optional)	Formative and Summative Assessments/ (Any Additional Comments Optional)
20. Use variables to represent two quantities in a real-world problem that change in relationship to one another, write an equation to express one quantity, thought of as the dependent variable, in terms of the other quantity, thought of as the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation. [6-EE9]				
Example: In a problem involving motion at constant speed, list and graph ordered pairs of distances and times, and write the equation $d=65 t$ to represent the relationship between distance and time.				
19. Write an inequality of the form $x>c$ or $x<c$ to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form $x>c$ or $x<c$ have infinitely many solutions; represent solutions of such inequalities on number line diagrams. [6-EE8]				
Statistics and Probability (Course of Study Grade 7)				
24. Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. [7-SP8]				
a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs. [7-SP8a]				

